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Abstract. We studied the ferromagnetic Ising model on two-dimensional finite systems with
non-integer characteristic lengths. First we considered very long strips with a finite ndmber

of complete rows and one partially filled row with probability which is the two-dimensional
version of a layer-by-layer growth. At fixed temperature, when the characteristic |ength+x
increases, the free energy per spin, the specific heat and the magnetic susceptibility oscillate,
attaining relative extremes at integér The oscillations in the free energy are interpreted

as surface corrections related to the oscillations in the mean coordination number. Finite-size
scaling relations are not satisfied with continudusbut still hold for fixedx and variablel,

where the differences of mean widths are integers. For fixetie fits of the free energy give

the conformal anomaly = % with very good accuracy. We also studied strips with discretized
Gaussian distributions of widths, with non-integer me@nand rms deviatiolrAL = 1. In

these structures, the thermodynamic quantities vary monotonically with contidydug some
methods for calculating critical exponents do not work properly when generalized to continuous
L. We also obtainc = % with good accuracy in these systems. We discuss the possible
implications of our results to real systems behaviour.

1. Introduction

In the study of magnetic systems with finite dimensions, one of the important problems is
the dependence of physical quantities on the characteristic length of the structure. Finite-size
scaling theories connect this problem to the critical behaviour of the corresponding infinite
systems and provide some tools which are widely used in the study of critical phenomena
[1,2]. The possibility of applications of those theories increased with the developments in
the experimental techniques to produce and analyse nanostructures such as thin films, small
magnetic clusters or islands and ferromagnetic strips [3—5]. These applications, however, are
frequently limited by simplifications in the geometry of the structures which are theoretically
studied. The latter systems usually have uniform lengths (integer lengths in units of the
lattice parameter) but, in experiments, the characteristic lengths are generally means over
certain distributions of lengths. Some modern techniques may lead to almost layer-by-
layer growth of thin films, which favours the approximation of real systems behaviour by
theoretical models. However, with those techniques it is also possible to construct films
with a finite number of (almost) complete layers and one partially filled layer, whose non-
integer thicknesses are measured with good accuracy [6, 7]. Thus we are confronted with the
guestions of how the physical properties depend on the characteristic length of the structure
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Figure 1. (a) Long strip with a finite numbel = 5 of complete rows and one partially filled
row with probability x = 0.4. (b) Strip with a Gaussian distribution of widths, with mean
L =5 and rms deviatiom\ L = 1. Full circles represent the spins and full lines represent bonds
between nearest neighbours.

when it is not integer, and how they depend on the distribution of microscopic lengths
around a mean value.

Although the behaviour of several magnetic models in structures with uniform
characteristic lengths in one, two and three dimensions has already been widely analysed,
little is known about the effects of a non-uniform distribution of lengths. A step in that
direction was taken in recent papers, where we studied the Ising model on strips [8] and thin
films [9, 10] with Gaussian distributions of thicknesses. However, the mean thicknesses
were always integers in those systems. The roughness patterns were defined by the relations
between the rms deviation of thicknesseg and the lengthL. It was shown that finite-
size scaling relations were satisfied in those systems, and their corrections due to different
roughness patterns were discussed.

In this paper we also consider two-dimensional systems with strip geometry. This
geometry has attracted much interest in the study of the two-dimensional critical behaviour
of pure [2,11,12] and disordered systems [13,14]. Recently it was also considered in a
theoretical model [15] to describe experiments on Fe strips deposited on W(110) [5]. Here
we study the ferromagnetic Ising model in strips with non-integer characteristic lengths
L, grown under different conditions, in order to analyse the dependence of the physical
properties on those lengths. First, we consider the two-dimensional version of a perfect
layer-by-layer growth: infinitely long strips with a finite numbeof complete rows and one
partially filled row with probabilityx (figure 1@)). These strips have characteristic lengths
L = I +x (width I with probability 1—x, width I 4+ 1 with probabilityx). Subsequently we
extend the study of strips with Gaussian distributions of widths (figug) 1 non-integer
mean widthsL. Hereafter we refer to these systems as Gaussian strips.

From the theoretical point of view, this paper is relevant as a study of the extensions
of finite-size scaling to non-integer lengths. Although the results presented here cannot be
directly related to experiments, they provide important information on the relations of growth
conditions and finite-size scaling when the lengths of the structures vary continuously. For
instance, in the strips with one incomplete row we show that the free energy per spin and
their second derivatives (specific heat and magnetic susceptibility) oscilldtaraseases,
at fixed temperature, but the same does not occur with the Gaussian strips. This is an effect
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of the particular ways of filling the different layers in the two processes, which lead to
oscillations of the mean coordination number in the strips with one incomplete row. We
will also show that some finite-size scaling techniques for calculating critical exponents,
which are usually applied to integer lengths do not work properly when generalized to
continuous values oL, but are still valid if the values of. differ by integers. Finally,

we will analyse the finite-size corrections to the free energy and show that the presence of
random boundaries still leads to the value of the central charge (conformal anmmal%)

We study strips with one incomplete row up o= 14, and Gaussian strips up to
L = 11 with a fixed rms deviatioddL = 1. We use transfer matrix techniques [11, 12]
to calculate the free energy per spin of very long strips, and obtain their specific heats and
magnetic susceptibilities from numerical derivatives fof Most calculations are done at
the critical temperaturé&,. of the two-dimensional Ising ferromagnétz(./J = 2.269...)

[16], where those quantities scale in particularly interesting forms.

This paper is organized as follows. In section 2 we present details of the calculations and
analyse the free energy data of strips with a single incomplete row. In section 3 we analyse
the specific heat and magnetic susceptibility of those strips. In section 4 we present results
in the Gaussian strips. In section 5 we calculate the surface free energy and the conformal
anomaly in both systems. In section 6 we summarize our results and conclusions.

2. Free energy of strips with one incomplete row

We have studied strips of lengfii = 10° sites, with complete rows of widths between 3
and 13 (figure 1d)). The incomplete row was filled with probability ranging from 01 to
0.9, at intervals of aL, and withx = 0.02 andx = 0.98. Free boundary conditions were
considered. The coupling > 0 was constant for all nearest-neighbour pairs. The external
magnetic fieldh was zero. For a certain strip length & I + x), the values of physical
guantities presented below are averages over four estimates, each obtained from a different
realization.

The free energy is calculated using standard transfer matrix techniques [11,12]. The
total free energy is

F(T,h) =—=N1Inx? (2)

where 10 is the largest eigenvalue of the transfer matrix. The free energy per site is
f(T,h)y=F(,h)/(NL).

In figure 2@) we show the total free energy per columi7,)/N of those strips as a
function of the characteristic length, nearL = 6. In figure 2p) we show the free energy
per site f (T,) for all values ofL analysed. For any., the fluctuations among the estimates
in the four realizations are much smaller than the size of the points, thus error bars are not
shown.

It is clear that the derivative oF with respect toL is discontinuous at integek
(figure 2@)), and that it leads to the oscillations ¢f (figure 2p)). F always decreases
with L at fixed temperature, since the internal energy decreases and the entropy increases
when the total number of spins increases. However, whercreases from an integer value
Ito1l+45 (8 < 1), the decrease aof is small, thenf increases. This behaviour is also
observed for small values af, from x = 0 to x ~ 0.4.

These oscillations are related to the oscillations of the mean coordination number. Let
B(I, x) be the total number of bonds in a very long strip of length We can write
B(Il,x) = B;(x) + B.(I), where B;(x) is the number of bonds between a site in the
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Figure 2. (a) Free energy per column & in strips with one incomplete row, for values bf
near 6. Lines connecting the data are drawn to guide the &yd=rée energy per spin &t in
the same strips, for all values &f analysed.

incomplete row and one of its neighbours (in the incomplete row or in the row below it—
figure 1@)), andB.(I) is the number of bonds between two sites in the complete rows. The
probability of finding a cluster ofz connected sites in the incomplete rowxid(1 — x)?,

we then obtain

Bi(x) = Nx+ N Y x"(1—x)’(m — 1) = N(x + x?). 2)
m=2
In equation (2), the first termN(x) is the number of vertical bonds, and the second term
(Nx?) is the number of horizontal bonds which contributeRax) (figure 1@)). On the
other handB.(I) = NI + N(I —1) = N(2I — 1). Then the mean coordination number is
B(1, x) x2—x-1
q(l,X)—N(1+x)—2+ 2 : 3)

For fixed I, ¢(I, x) has a minimum forc = x,,, which depends ori. For 4< 1 <13
it is always near @; for instance, forl = 4 the minumum is at,, ~ 0.359 and for
I = 13, atxy, =~ 0.454. We also observe that the maximumyoin the range &< L <5 is
located between = 0.3 andx = 0.4, while the maximum off in the range 13 L < 14
is located between = 0.4 andx = 0.5. It suggests a relation between these oscillatory
behaviours.

In figure 3 we showf + Aq (1, x) versusL with A = 0.145. The relative amplitude
of the oscillations are much smaller than in figuré)2(Higher-order corrections ig(/, x)
would probably make that plot smoother. Then the oscillations may be interpreted as surface
corrections to the free energy. These corrections are related/tor), which measures
the number of absent bonds when compared to a homogeneous lattiee2{the two-
dimensional system or a strip with periodic boundary conditions, whgfe cbrrections
vanish). Note also thag (7, x) has an 1L dependence (equation (3)), characteristic of
surface corrections.

The oscillations off have interesting consequences to finite-size scaling. Althgugh
is not a monotonic function of continuous, it scales in a simple form for values df
differring by integers, i.eL = I 4+ x with variable I and fixedx. This property is clear
in figure 4, where we showf — f, versus YL, with f,, = —0.929695398.. (the exact
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Figure 4. Difference between the free energy per spin
of strips with one incomplete row and the free energy
per spin of the two-dimensional Ising model [17] at
0.2 0.3 T. versus JL. Straight lines are least squares fits of
1 /L the data forx = O (lower line),x = 0.1 andx = 0.4
(upper line).

Otll!’l!!l[llll]!!

0 0.1

value of the free energy per site &t in the square lattice [17]). Straight lines are least
squares fits (usind. > 5) of three sets of pointsx = 0, x = 0.1 andx = 0.4. The
convergence off to f, is good, with errors less than 1%) and indicate that the amplitude
of the oscillations off decreases approximately agl1 In section 5 we will show that the
fits of f by higher-order polynomials lead to accurate estimates of the conformal anomaly
c= % and we will also discuss the surface correctionsf of

Finally, we observe that the oscillations gfare still present at other temperatures. In
figures 58) and ) we show f versusL atT = T./2 andT = 2T.. It proves that the
behaviour of f is not just a consequence of the specific properties of the model, such as
the transition of the two-dimensional system7at but is intimately related to the geometry
of the system. The local maxima ¢f are also at values of near 04, and these values
increase with/, similarly to the minima of; (7, x). At those temperatures, however, a first-
order correction ing (I, x) does not reduce the oscillations gfas done af, (figure 3).
Higher-order corrections ig (I, x) must then be necessary for that purpose.
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Figure 5. (a) Free energy per spin & = T./2 versus lengtlL in strips with one incomplete
row. (b) Free energy per spin d = 27, versus length. in the same strips.

3. Specific heat and magnetic susceptibility of strips with one incomplete row

In order to obtain the specific heat per sgip at temperaturd’, we must calculate the free
energy atT, T; = 0.9997 and 7> = 1.0017T, with # = 0, and its numerical second-order
derivative:

2 f

—. 4
0T2 @)

In figure 6 we show the specific he@t (T,) versus InL. C; also oscillates, with local
maxima at intege.. The minima ofC, is also atx near 04, and the location of these
minima increase with .

We expect that

Cr(T,) ~InL (5)

C,=-T

for integer L [2], and it is confirmed by the linear fit of the data far= 1 > 7. This
scaling is also obtained with = I + x, for variable/ and fixedx.
The initial susceptibility

3 fr
o= (), ©

is obtained numerically from the free energies calculate@@at = 0) and (7, 1 = 107%),
with A in units of J /kgT.

In figure 7 we show Irx; (T;) versus InL, and we note that this quantity also oscillates.
The decrease of, for smallx is shown in greater detail in the inset of figure 7, for: 7.
However, the susceptibility does not follow the oscillationsy6f, x).

It is expected thaj, (T,.) scales as

xo(T.) ~ LY 7

with y /v = 175, asL — oo. The linear fit of the data fol. = I > 7 in figure 7 is
consistent with a valug//v ~ 1.7. The data forL = I + x, with fixed x and variablel,
also scale with a ratigr /v near this value.
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Figure 6. Specific heat per spin & versus length.  Figure 7. Magnetic susceptibility per spin & and
in strips with one incomplete row. The line is a linearh = 0 versus lengthL in strips with one incomplete
fit of the data for integel. > 7. row. The line is a linear fit of the data for integer
L > 7. The inset shows the decrease;Qf(T,) after
L =7 (the full square is the result far = 7).

We also observe that the amplitudes of the oscillationsCef and x; decrease
approximately as AL, similarly to the oscillations of the free energy.

The standard method of obtaining two-dimensional critical exponents from calculations
in strips is to obtain their finite-size estimates and extrapolate thefnte co. In the case
of the ratio of exponentg /v, the finite-size estimates are

Yy Inlxe/xe-sl
(E)L,a T In[L/(L - 8)] ®

ands = 1 is generally used [2, 8, 14].

Our results suggest that this method may be applied not only to infegeut also to
non-integerL if § = 1. In figure 8 we show?); 1 versus ¥L (equation (8)). Straight lines
are fits of the data fox = 0 andx = 0.5. They provide estimates of/v near the exact
value. Fits to second or third degree curves (not shown in figure 8) provide much better
estimates. However, the oscillations pf (T.) (figure 7) prove that this method cannot
be generalized to non-integérin equation (8). Equivalently, equation (7) is not valid for
continuousL, but requires oscillatory corrections.

Thus, the main result which we have obtained is that the thermodynamic quantities in
strips with a single incomplete row cannot be interpolated by their values in strips with
complete rows (integet). Then, finite-size scaling relations, such as equations (5) and (7),
do not apply to continuous, but are still valid if the values of. differ by integers.

4. Strips with Gaussian distributions of widths

Now we consider strips with discretized Gaussian distributions of widths whose rms
deviation is AL = 1 (constant for allL). We have calculated the free energy
(equation (1)), the specific hedl, (equation (4)) and the magnetic susceptibility
(equation (6)), at = T, andh = 0, using the same techniques presented in sections 2
and 3. We have considered strips of mean widths B < 11, with interval 01 between
consecutivel.. The free energy af. andz = 0 was calculated up té = 14, in order to
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Figure 10. (a) Specific heat per spin &, versus lengthl in Gaussian strips wittAL = 1.
(b) Magnetic susceptibility per spin & and/ = 0 versus length. in the same strips.

estimate the conformal anomaly (section 5). The strip lengths Were10°.

In figure 9 we showf — f, at T, versus YL in the Gaussian strips. We note that the
large oscillations of the results in the strips with incomplete rows are absent in this case.
The error in the linear fit is nearly 18, taking into account the estimates for &ll> 5. In
figure 108) we showC, (T,) versus InL and in figure 10¢) we show In(x.(T,)) versus
In L in the Gaussian strips. We also do not observe large oscillations in those plots (small
fluctuations in the inclinations are observed in high-resolution plots).

It is interesting to observe that the physical quantities vary monotonically ith
systems which are rough even for inteder Although the dimensionality of thin magnetic
films is different, we devise the possibility of finding similar features in those structures. If
the roughness pattern is approximately the same for all mean thicknesses (integer or not),
physical quantities must vary monotonically with at a fixed temperature. On the other
hand, those quantities may oscillate in the case of layer-by-layer growth if there is one
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Figure 11. Finite-size estimates of the ratio of exponepfs (equation (10)) in Gaussian strips
with AL =1: (@ § =0.1, (b) § =02, (c) 6 =04, d) § =1. In (@)-(c), lines connecting
the data are drawn to guide the eye. &) (ve show a second-degree curve fitting the data for
L>T7.

partially filled layer, as we have observed in the strips with a single incomplete row. It
is not clear, however, whether this analysis can be extended or not to quantities such as
critical temperatures. In order to examine this question, a three-dimensional model should
certainly be considered.

Despite the apparently smooth behaviourfQfC; and x, (figures 9, 104) and p)),
finite-size scaling relations with continuous such as equations (5) and (7), must be
carefully analysed. Linear fits of all the data with> 7 in figures 104) and ) provide
reasonable estimates of critical exponenis=%£ O0—logarithm—andy /v = 1.75). This
process parallels the experimental methods of estimating critical exponents. On the other
hand, more refined techniques of theoretical analysis, such as equation (8), may present
some problems. In figures I)(d) we show(X), s versus ¥L for § = 0.1, § = 0.2,

8§ =04 ands = 1. Fors = 1 the trend toX = 1.75 is clear (a fit to a second-degree
curve is shown in figure 1d}), but for the other values of there are oscillations whose
amplitudes do not decrease Adncreases. These amplitudes do not diverge whes 0
(note that the amplitudes fér= 0.1 ands = 0.2 are nearly the same), which is consistent
with the small fluctuations in the inclinations in figure b(

The discretization of the Gaussian distributions of widths is responsible for those
oscillations. In fact, for integeL, the distribution is dominated by three values of widths
(L—1, L andL + 1), while for half-integerL = I + 0.5 it is dominated by two widthsi(
and! + 1). Thus the increase of the mean widih-& L + § in equation (10)) may have
different effects on the susceptibility for integer and half-integer

The main conclusion from the results above is that thermodynamic quantities in Gaussian
strips with non-integer mean width can be interpolated, with a reasonable accuracy, by
their values in Gaussian strips with integer(figures 9 and 10). Then, finite-size scaling
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Table 1. For strips with one incomplete rowi.(= I + x, fixed x), M is the degree of the
polynomial in /L which gives the best estimate of the critical free enefgy and f; and A

are first- and second-order terms of the expansion (equation (83)the conformal anomaly.
Errors in the last digits, shown in parentheses, are standard deviations given by the fitting
procedure without considering error bars in the data.

X M fe fs A c=24A /7
0.1 7 -0.92969540(1) 0.19472687(5)-0.065445(1) 0.49996(1)
0.2 6 -0.92969537(1) 0.2048197(1)—0.065417(2) 0.49975(2)
0.3 6 -—0.92969538(1) 0.21250247(9)-0.065424(2) 0.49980(2)
04 6 -—0.92969538(1) 0.2172921(1)—0.065431(2) 0.49986(2)
05 6 -—0.92969538(1) 0.21865692(8)-0.065428(1) 0.49983(1)
06 5 -0.92969538(1) 0.21735978(2)-0.0654309(2) 0.499855(2)
0.7 5 -0.92969540(1) 0.213609 18(5)-0.065441(1) 0.49993(1)
0.8 5 -0.92969540(1) 0.20575235(4)-0.065440(1) 0.49992(1)
0.9 6 -0.92969538(1) 0.1954872(1)—0.065430(2) 0.49985(2)

relations with continuoud. holds approximately. Small corrections, however, are still
present, and they are enhanced by the standard theoretical methods of estimating critical
exponents when applied to continuolus

5. Surface free energy and conformal anomaly with random boundaries

In an infinitely long strip of width, it is expected that the free energy per spin at criticality
has the scaling form [18, 19]

A
fefutZe St ©

In equation (18)%fs is the surface free energy, which depends on the boundary conditions (it
vanishes for periodic boundaries), whiteis a quantity which characterizes the universality
class of the system. For free boundarias= —nc/24, wherec is the conformal anomaly

or the value of the central charge of the Virasoro algebra [18—20]. For the two-dimensional
Ising model,c = 3.

In strips with incomplete rows, it is very difficult to expantin powers of YL for
continuousL. As shown in section 2, first-order correctionsftare oscillatory and related
to ¢g(I,x) (equation (3)). Then a numerical analysis of the whole data would have to
consider oscillatory corrections, and a functional form for these corrections (for instance,
powers ofg (1, x)) would have to be assumed. On the other hand, if we analyse separately
the data for each value af we can expand in powers of YL and estimate the corrections
of equation (9) with good accuracy.

We have used polynomials of various degrees, and have obtained estimafgs of
(zeroth-order term)f; (first-order term) and\ (second-order term). Since the exact value
foo = —0.929695398.. is known, we considered the estimates from the polynomials
which give the best estimates ¢f,. In table 1 we show, for each value of the degree
M of that polynomial, the respective estimates faf, f; and A, and the corresponding
estimate of the conformal anomaty= —24A /x.

Our results indicate that = % Moreover, we observe that the surface free energy for
L=1I+xandL = I — x is nearly the same, since the boundaries are very similar: the
magnetic sites in the last row of the strip with= I + x are the non-magnetic (absent)
sites in the last row of the strip with = I — x, and vice versa. In fact, wheh — oo,
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Table 2. For Gaussian stripsL( = I + x, fixed x), M is the degree of the polynomial in

1/L which gives the best estimate of the critical free enefgy and f; and A are first- and
second-order terms of the expansion (equation (8)5 the conformal anomaly. The last line
shows estimates considering all valuesIof5 < L < 14). Errors in the last digits, shown

in parentheses, are standard deviations given by the fitting procedure without considering error
bars in the data.

X M fe fs A c=24A/m

0 5 —0.92969538(1) 0.24395591(6)}-0.065429(1) 0.49984(1)
0.1 5 -0.92969538(1) 0.24409153(9)-0.065427(1) 0.49983(1)
0.2 5 -0.92969538(1) 0.24436332(7)0.065431(1) 0.49986(1)
0.3 5 -0.92969538(1) 0.24458067(5)}-0.065429(1) 0.49984(1)
04 5 -0.92969537(1) 0.2443456(1)—0.065424(2) 0.49980(2)
05 5 -0.92969538(1) 0.24476068(8)-0.065426(1) 0.49982(1)
06 5 —-0.92969538(1) 0.24441246(7)0.065426(1) 0.49982(1)
0.7 5 -0.92969538(1) 0.24413789(7}0.065430(1) 0.49985(1)
0.8 5 -0.92969538(1) 0.24375106(6)0.065429(1) 0.49984(1)
09 5 -0.92969538(1) 0.2440957(1)—0.065428(2) 0.49983(2)

2

~0.92971(5) 0.2446(8) —0.0674(31)  0.515(24)

q(1, x) is symmetric around,, = 0.5 (equation (3)), which explains the symmetry ff
aroundx = 0.5.

We have performed the same analysis in the Gaussian strips. In table 2 we show the
degreeM of the polynomials which give the best estimatesfqf and the corresponding
estimates off;, A andc, for each value ofc (consideringL = I + x). Only data with
L > 5 were considered. The results are also consistent with a universal cvaiu%z and
the surface free energy is nearly the same for all values. oThe same quantities were
estimated using all values df together (from 5 to 14, at intervals1), and are shown in
the last line of table 2. In that case, the errors are much larger, but still consistent with
c = % This problem is certainly related to the discretization procedure, which leads to
slightly different boundary effects for different as discussed in section 4.

Thus, the main conclusion is that the conformal anomaiy% is obtained, with good
accuracy, in the case of random boundaries, for all types of randomness considered here.

6. Summary and conclusion

We studied the Ising model on two types of two-dimensional finite structures with non-
integer characteristic lengths.

First we considered strips witlh complete rows and one partially filled row with
probability x (lengthL = I + x). In those strips, the free energy, the specific heat and
the magnetic susceptibility per spin oscillate Asncreases, at fixed temperature. This
behaviour is related to the oscillations in the mean coordination number of the strip, while
the last row is being filled. The main consequence of those oscillations is that finite-size
scaling cannot be generalized to continudusnless oscillatory corrections are considered.
The amplitude of these corrections decay ##,1but they are still very high fol. ~ 10.

On the other hand, for values &f differing by integers L = I + x, with variable/ and
fixed x), finite-size scaling relations are satisfied, with the usual corrections in powers of
1/L.

We also considered strips with discretized Gaussian distributions of widths (mean width

L and rms deviationAL = 1). In these structures, there are no oscillations of the
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thermodynamic quantities as functions of continudus Small fluctuations in declivities,
which are detected in the calculation of critical exponents, are related to the discretization
of the width distribution. Thus finite-size scaling relations are satisfied with reasonable
accuracy for continuous.

The fits of the free energy as a function gfflat 7, indicate that the conformal anomaly
isc= % for all types of random boundaries considered here.

If thermodynamic quantities vary smoothly within magnetic systems with non-integer
characteristic lengths, then our results suggest that they are not grown layer-by-layer, but
instead that their roughness pattern is constant for.alor, possibly, they have another
roughness pattern with a smooth relation betwé&eand AL). It would be interesting to
pursue the investigation of these features both in real systems (e.g. thin magnetic films) and
in three-dimensional models.
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