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Abstract. We studied the ferromagnetic Ising model on two-dimensional finite systems with
non-integer characteristic lengths. First we considered very long strips with a finite numberI

of complete rows and one partially filled row with probabilityx, which is the two-dimensional
version of a layer-by-layer growth. At fixed temperature, when the characteristic lengthL = I+x
increases, the free energy per spin, the specific heat and the magnetic susceptibility oscillate,
attaining relative extremes at integerL. The oscillations in the free energy are interpreted
as surface corrections related to the oscillations in the mean coordination number. Finite-size
scaling relations are not satisfied with continuousL, but still hold for fixedx and variableI ,
where the differences of mean widths are integers. For fixedx, the fits of the free energy give
the conformal anomalyc = 1

2 with very good accuracy. We also studied strips with discretized
Gaussian distributions of widths, with non-integer meansL and rms deviation1L = 1. In
these structures, the thermodynamic quantities vary monotonically with continuousL, but some
methods for calculating critical exponents do not work properly when generalized to continuous
L. We also obtainc = 1

2 with good accuracy in these systems. We discuss the possible
implications of our results to real systems behaviour.

1. Introduction

In the study of magnetic systems with finite dimensions, one of the important problems is
the dependence of physical quantities on the characteristic length of the structure. Finite-size
scaling theories connect this problem to the critical behaviour of the corresponding infinite
systems and provide some tools which are widely used in the study of critical phenomena
[1, 2]. The possibility of applications of those theories increased with the developments in
the experimental techniques to produce and analyse nanostructures such as thin films, small
magnetic clusters or islands and ferromagnetic strips [3–5]. These applications, however, are
frequently limited by simplifications in the geometry of the structures which are theoretically
studied. The latter systems usually have uniform lengths (integer lengths in units of the
lattice parameter) but, in experiments, the characteristic lengths are generally means over
certain distributions of lengths. Some modern techniques may lead to almost layer-by-
layer growth of thin films, which favours the approximation of real systems behaviour by
theoretical models. However, with those techniques it is also possible to construct films
with a finite number of (almost) complete layers and one partially filled layer, whose non-
integer thicknesses are measured with good accuracy [6, 7]. Thus we are confronted with the
questions of how the physical properties depend on the characteristic length of the structure
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Figure 1. (a) Long strip with a finite numberI = 5 of complete rows and one partially filled
row with probability x = 0.4. (b) Strip with a Gaussian distribution of widths, with mean
L = 5 and rms deviation1L = 1. Full circles represent the spins and full lines represent bonds
between nearest neighbours.

when it is not integer, and how they depend on the distribution of microscopic lengths
around a mean value.

Although the behaviour of several magnetic models in structures with uniform
characteristic lengths in one, two and three dimensions has already been widely analysed,
little is known about the effects of a non-uniform distribution of lengths. A step in that
direction was taken in recent papers, where we studied the Ising model on strips [8] and thin
films [9, 10] with Gaussian distributions of thicknesses. However, the mean thicknessesL

were always integers in those systems. The roughness patterns were defined by the relations
between the rms deviation of thicknesses1L and the lengthL. It was shown that finite-
size scaling relations were satisfied in those systems, and their corrections due to different
roughness patterns were discussed.

In this paper we also consider two-dimensional systems with strip geometry. This
geometry has attracted much interest in the study of the two-dimensional critical behaviour
of pure [2, 11, 12] and disordered systems [13, 14]. Recently it was also considered in a
theoretical model [15] to describe experiments on Fe strips deposited on W(110) [5]. Here
we study the ferromagnetic Ising model in strips with non-integer characteristic lengths
L, grown under different conditions, in order to analyse the dependence of the physical
properties on those lengths. First, we consider the two-dimensional version of a perfect
layer-by-layer growth: infinitely long strips with a finite numberI of complete rows and one
partially filled row with probabilityx (figure 1(a)). These strips have characteristic lengths
L = I+x (width I with probability 1−x, width I+1 with probabilityx). Subsequently we
extend the study of strips with Gaussian distributions of widths (figure 1(b)) to non-integer
mean widthsL. Hereafter we refer to these systems as Gaussian strips.

From the theoretical point of view, this paper is relevant as a study of the extensions
of finite-size scaling to non-integer lengths. Although the results presented here cannot be
directly related to experiments, they provide important information on the relations of growth
conditions and finite-size scaling when the lengths of the structures vary continuously. For
instance, in the strips with one incomplete row we show that the free energy per spin and
their second derivatives (specific heat and magnetic susceptibility) oscillate asL increases,
at fixed temperature, but the same does not occur with the Gaussian strips. This is an effect
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of the particular ways of filling the different layers in the two processes, which lead to
oscillations of the mean coordination number in the strips with one incomplete row. We
will also show that some finite-size scaling techniques for calculating critical exponents,
which are usually applied to integer lengthsL, do not work properly when generalized to
continuous values ofL, but are still valid if the values ofL differ by integers. Finally,
we will analyse the finite-size corrections to the free energy and show that the presence of
random boundaries still leads to the value of the central charge (conformal anomaly)c = 1

2.
We study strips with one incomplete row up toL = 14, and Gaussian strips up to

L = 11 with a fixed rms deviation1L = 1. We use transfer matrix techniques [11, 12]
to calculate the free energy per spin of very long strips, and obtain their specific heats and
magnetic susceptibilities from numerical derivatives off . Most calculations are done at
the critical temperatureTc of the two-dimensional Ising ferromagnet (kBTc/J = 2.269. . .)
[16], where those quantities scale in particularly interesting forms.

This paper is organized as follows. In section 2 we present details of the calculations and
analyse the free energy data of strips with a single incomplete row. In section 3 we analyse
the specific heat and magnetic susceptibility of those strips. In section 4 we present results
in the Gaussian strips. In section 5 we calculate the surface free energy and the conformal
anomaly in both systems. In section 6 we summarize our results and conclusions.

2. Free energy of strips with one incomplete row

We have studied strips of lengthN = 105 sites, with complete rows of widthsI between 3
and 13 (figure 1(a)). The incomplete row was filled with probabilityx ranging from 0.1 to
0.9, at intervals of 0.1, and withx = 0.02 andx = 0.98. Free boundary conditions were
considered. The couplingJ > 0 was constant for all nearest-neighbour pairs. The external
magnetic fieldh was zero. For a certain strip length (L = I + x), the values of physical
quantities presented below are averages over four estimates, each obtained from a different
realization.

The free energy is calculated using standard transfer matrix techniques [11,12]. The
total free energy is

F(T , h) = −N ln λ0
L (1)

where λ0
L is the largest eigenvalue of the transfer matrix. The free energy per site is

f (T , h) = F(T , h)/(NL).
In figure 2(a) we show the total free energy per columnF(Tc)/N of those strips as a

function of the characteristic lengthL, nearL = 6. In figure 2(b) we show the free energy
per sitef (Tc) for all values ofL analysed. For anyL, the fluctuations among the estimates
in the four realizations are much smaller than the size of the points, thus error bars are not
shown.

It is clear that the derivative ofF with respect toL is discontinuous at integerL
(figure 2(a)), and that it leads to the oscillations off (figure 2(b)). F always decreases
with L at fixed temperature, since the internal energy decreases and the entropy increases
when the total number of spins increases. However, whenL increases from an integer value
I to I + δ (δ � 1), the decrease ofF is small, thenf increases. This behaviour is also
observed for small values ofx, from x = 0 to x ≈ 0.4.

These oscillations are related to the oscillations of the mean coordination number. Let
B(I, x) be the total number of bonds in a very long strip of lengthN . We can write
B(I, x) = Bi(x) + Bc(I ), whereBi(x) is the number of bonds between a site in the
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Figure 2. (a) Free energy per column atTc in strips with one incomplete row, for values ofL
near 6. Lines connecting the data are drawn to guide the eye. (b) Free energy per spin atTc in
the same strips, for all values ofL analysed.

incomplete row and one of its neighbours (in the incomplete row or in the row below it—
figure 1(a)), andBc(I ) is the number of bonds between two sites in the complete rows. The
probability of finding a cluster ofm connected sites in the incomplete row isxm(1− x)2,
we then obtain

Bi(x) = Nx +N
∞∑
m=2

xm(1− x)2(m− 1) = N(x + x2). (2)

In equation (2), the first term (Nx) is the number of vertical bonds, and the second term
(Nx2) is the number of horizontal bonds which contribute toBi(x) (figure 1(a)). On the
other hand,Bc(I ) = NI +N(I − 1) = N(2I − 1). Then the mean coordination number is

q(I, x) = B(I, x)

N(I + x) = 2+ x
2− x − 1

L
. (3)

For fixedI , q(I, x) has a minimum forx = xM , which depends onI . For 46 I 6 13
it is always near 0.4; for instance, forI = 4 the minumum is atxM ≈ 0.359 and for
I = 13, atxM ≈ 0.454. We also observe that the maximum off in the range 4< L < 5 is
located betweenx = 0.3 andx = 0.4, while the maximum off in the range 13< L < 14
is located betweenx = 0.4 andx = 0.5. It suggests a relation between these oscillatory
behaviours.

In figure 3 we showf + Aq(I, x) versusL with A = 0.145. The relative amplitude
of the oscillations are much smaller than in figure 2(b). Higher-order corrections inq(I, x)
would probably make that plot smoother. Then the oscillations may be interpreted as surface
corrections to the free energy. These corrections are related toq(I, x), which measures
the number of absent bonds when compared to a homogeneous lattice (q = 2—the two-
dimensional system or a strip with periodic boundary conditions, where 1/L corrections
vanish). Note also thatq(I, x) has an 1/L dependence (equation (3)), characteristic of
surface corrections.

The oscillations off have interesting consequences to finite-size scaling. Althoughf

is not a monotonic function of continuousL, it scales in a simple form for values ofL
differring by integers, i.e.L = I + x with variableI and fixedx. This property is clear
in figure 4, where we showf − f∞ versus 1/L, with f∞ = −0.929 695 398. . . (the exact
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Figure 3. Free energy per spin atTc with a correction
proportional to the mean coordination numberq(I, x).
The value ofA is chosen to minimize the relative
amplitudes of the oscillations.

Figure 4. Difference between the free energy per spin
of strips with one incomplete row and the free energy
per spin of the two-dimensional Ising model [17] at
Tc versus 1/L. Straight lines are least squares fits of
the data forx = 0 (lower line),x = 0.1 andx = 0.4
(upper line).

value of the free energy per site atTc in the square lattice [17]). Straight lines are least
squares fits (usingL > 5) of three sets of points:x = 0, x = 0.1 and x = 0.4. The
convergence off to f∞ is good, with errors less than 10−3, and indicate that the amplitude
of the oscillations off decreases approximately as 1/L. In section 5 we will show that the
fits of f by higher-order polynomials lead to accurate estimates of the conformal anomaly
c = 1

2, and we will also discuss the surface corrections off .
Finally, we observe that the oscillations off are still present at other temperatures. In

figures 5(a) and (b) we showf versusL at T = Tc/2 andT = 2Tc. It proves that the
behaviour off is not just a consequence of the specific properties of the model, such as
the transition of the two-dimensional system atTc, but is intimately related to the geometry
of the system. The local maxima off are also at values ofx near 0.4, and these values
increase withI , similarly to the minima ofq(I, x). At those temperatures, however, a first-
order correction inq(I, x) does not reduce the oscillations off as done atTc (figure 3).
Higher-order corrections inq(I, x) must then be necessary for that purpose.
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Figure 5. (a) Free energy per spin atT = Tc/2 versus lengthL in strips with one incomplete
row. (b) Free energy per spin atT = 2Tc versus lengthL in the same strips.

3. Specific heat and magnetic susceptibility of strips with one incomplete row

In order to obtain the specific heat per spinCL at temperatureT , we must calculate the free
energy atT , T1 = 0.999T andT2 = 1.001T , with h = 0, and its numerical second-order
derivative:

CL = −T ∂
2f

∂T 2
. (4)

In figure 6 we show the specific heatCL(Tc) versus lnL. CL also oscillates, with local
maxima at integerL. The minima ofCL is also atx near 0.4, and the location of these
minima increase withI .

We expect that

CL(Tc) ∼ lnL (5)

for integerL [2], and it is confirmed by the linear fit of the data forL = I > 7. This
scaling is also obtained withL = I + x, for variableI and fixedx.

The initial susceptibility

χL =
(
∂2fL

∂h2

)
h=0

(6)

is obtained numerically from the free energies calculated at(T , h = 0) and (T , h = 10−4),
with h in units of J/kBT .

In figure 7 we show lnχL(Tc) versus lnL, and we note that this quantity also oscillates.
The decrease ofχL for smallx is shown in greater detail in the inset of figure 7, forL ≈ 7.
However, the susceptibility does not follow the oscillations ofq(I, x).

It is expected thatχL(Tc) scales as

χL(Tc) ∼ Lγ/ν (7)

with γ /ν = 1.75, asL → ∞. The linear fit of the data forL = I > 7 in figure 7 is
consistent with a valueγ /ν ≈ 1.7. The data forL = I + x, with fixed x and variableI ,
also scale with a ratioγ /ν near this value.
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Figure 6. Specific heat per spin atTc versus lengthL
in strips with one incomplete row. The line is a linear
fit of the data for integerL > 7.

Figure 7. Magnetic susceptibility per spin atTc and
h = 0 versus lengthL in strips with one incomplete
row. The line is a linear fit of the data for integer
L > 7. The inset shows the decrease ofχL(Tc) after
L = 7 (the full square is the result forL = 7).

We also observe that the amplitudes of the oscillations ofCL and χL decrease
approximately as 1/L, similarly to the oscillations of the free energy.

The standard method of obtaining two-dimensional critical exponents from calculations
in strips is to obtain their finite-size estimates and extrapolate them toL→∞. In the case
of the ratio of exponentsγ /ν, the finite-size estimates are(γ

ν

)
L,δ
= ln[χL/χL−δ]

ln[L/(L− δ)] (8)

andδ = 1 is generally used [2, 8, 14].
Our results suggest that this method may be applied not only to integerL, but also to

non-integerL if δ = 1. In figure 8 we show( γ
ν
)L,1 versus 1/L (equation (8)). Straight lines

are fits of the data forx = 0 andx = 0.5. They provide estimates ofγ /ν near the exact
value. Fits to second or third degree curves (not shown in figure 8) provide much better
estimates. However, the oscillations ofχL(Tc) (figure 7) prove that this method cannot
be generalized to non-integerδ in equation (8). Equivalently, equation (7) is not valid for
continuousL, but requires oscillatory corrections.

Thus, the main result which we have obtained is that the thermodynamic quantities in
strips with a single incomplete row cannot be interpolated by their values in strips with
complete rows (integerL). Then, finite-size scaling relations, such as equations (5) and (7),
do not apply to continuousL, but are still valid if the values ofL differ by integers.

4. Strips with Gaussian distributions of widths

Now we consider strips with discretized Gaussian distributions of widths whose rms
deviation is 1L = 1 (constant for allL). We have calculated the free energyf
(equation (1)), the specific heatCL (equation (4)) and the magnetic susceptibilityχL
(equation (6)), atT = Tc and h = 0, using the same techniques presented in sections 2
and 3. We have considered strips of mean widths 36 L 6 11, with interval 0.1 between
consecutiveL. The free energy atTc andh = 0 was calculated up toL = 14, in order to
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Figure 8. Finite-size estimates of the ratio of exponents
γ /ν (equation (10) withδ = 1) in strips with incomplete
rows. Lines are linear fits of the data forx = 0 (lower
line) andx = 0.5 (upper line), usingL > 7.

Figure 9. Difference between the free energy per spin
of Gaussian strips and the free energy per spin of the
two-dimensional Ising model [17] atTc versus 1/L.
The line is a linear fit of the data forL > 5.

Figure 10. (a) Specific heat per spin atTc versus lengthL in Gaussian strips with1L = 1.
(b) Magnetic susceptibility per spin atTc andh = 0 versus lengthL in the same strips.

estimate the conformal anomaly (section 5). The strip lengths wereN = 105.
In figure 9 we showf − f∞ at Tc versus 1/L in the Gaussian strips. We note that the

large oscillations of the results in the strips with incomplete rows are absent in this case.
The error in the linear fit is nearly 10−3, taking into account the estimates for allL > 5. In
figure 10(a) we showCL(Tc) versus lnL and in figure 10(b) we show ln(χL(Tc)) versus
lnL in the Gaussian strips. We also do not observe large oscillations in those plots (small
fluctuations in the inclinations are observed in high-resolution plots).

It is interesting to observe that the physical quantities vary monotonically withL in
systems which are rough even for integerL. Although the dimensionality of thin magnetic
films is different, we devise the possibility of finding similar features in those structures. If
the roughness pattern is approximately the same for all mean thicknesses (integer or not),
physical quantities must vary monotonically withL, at a fixed temperature. On the other
hand, those quantities may oscillate in the case of layer-by-layer growth if there is one
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Figure 11. Finite-size estimates of the ratio of exponentsγ /ν (equation (10)) in Gaussian strips
with 1L = 1: (a) δ = 0.1, (b) δ = 0.2, (c) δ = 0.4, (d) δ = 1. In (a)–(c), lines connecting
the data are drawn to guide the eye. In (d) we show a second-degree curve fitting the data for
L > 7.

partially filled layer, as we have observed in the strips with a single incomplete row. It
is not clear, however, whether this analysis can be extended or not to quantities such as
critical temperatures. In order to examine this question, a three-dimensional model should
certainly be considered.

Despite the apparently smooth behaviour off , CL andχL (figures 9, 10(a) and (b)),
finite-size scaling relations with continuousL, such as equations (5) and (7), must be
carefully analysed. Linear fits of all the data withL > 7 in figures 10(a) and (b) provide
reasonable estimates of critical exponents (α = 0—logarithm—andγ /ν = 1.75). This
process parallels the experimental methods of estimating critical exponents. On the other
hand, more refined techniques of theoretical analysis, such as equation (8), may present
some problems. In figures 11(a)–(d) we show( γ

ν
)L,δ versus 1/L for δ = 0.1, δ = 0.2,

δ = 0.4 andδ = 1. For δ = 1 the trend toγ
ν
= 1.75 is clear (a fit to a second-degree

curve is shown in figure 11(d)), but for the other values ofδ there are oscillations whose
amplitudes do not decrease asL increases. These amplitudes do not diverge whenδ → 0
(note that the amplitudes forδ = 0.1 andδ = 0.2 are nearly the same), which is consistent
with the small fluctuations in the inclinations in figure 10(b).

The discretization of the Gaussian distributions of widths is responsible for those
oscillations. In fact, for integerL, the distribution is dominated by three values of widths
(L− 1, L andL+ 1), while for half-integerL = I + 0.5 it is dominated by two widths (I
andI + 1). Thus the increase of the mean width (L→ L+ δ in equation (10)) may have
different effects on the susceptibility for integer and half-integerL.

The main conclusion from the results above is that thermodynamic quantities in Gaussian
strips with non-integer mean widthL can be interpolated, with a reasonable accuracy, by
their values in Gaussian strips with integerL (figures 9 and 10). Then, finite-size scaling
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Table 1. For strips with one incomplete row (L = I + x, fixed x), M is the degree of the
polynomial in 1/L which gives the best estimate of the critical free energyf∞, andfs and1
are first- and second-order terms of the expansion (equation (8)).c is the conformal anomaly.
Errors in the last digits, shown in parentheses, are standard deviations given by the fitting
procedure without considering error bars in the data.

x M f∞ fs 1 c = 241/π

0.1 7 −0.929 695 40(1) 0.194 726 87(5)−0.065 445(1) 0.499 96(1)
0.2 6 −0.929 695 37(1) 0.204 819 7(1)−0.065 417(2) 0.499 75(2)
0.3 6 −0.929 695 38(1) 0.212 502 47(9)−0.065 424(2) 0.499 80(2)
0.4 6 −0.929 695 38(1) 0.217 292 1(1)−0.065 431(2) 0.499 86(2)
0.5 6 −0.929 695 38(1) 0.218 656 92(8)−0.065 428(1) 0.499 83(1)
0.6 5 −0.929 695 38(1) 0.217 359 78(2)−0.065 4309(2) 0.499 855(2)
0.7 5 −0.929 695 40(1) 0.213 609 18(5)−0.065 441(1) 0.499 93(1)
0.8 5 −0.929 695 40(1) 0.205 752 35(4)−0.065 440(1) 0.499 92(1)
0.9 6 −0.929 695 38(1) 0.195 487 2(1)−0.065 430(2) 0.499 85(2)

relations with continuousL holds approximately. Small corrections, however, are still
present, and they are enhanced by the standard theoretical methods of estimating critical
exponents when applied to continuousL.

5. Surface free energy and conformal anomaly with random boundaries

In an infinitely long strip of widthL, it is expected that the free energy per spin at criticality
has the scaling form [18, 19]

f = f∞ + fs
L
+ 1

L2
+ · · · . (9)

In equation (18),12fs is the surface free energy, which depends on the boundary conditions (it
vanishes for periodic boundaries), while1 is a quantity which characterizes the universality
class of the system. For free boundaries,1 = −πc/24, wherec is the conformal anomaly
or the value of the central charge of the Virasoro algebra [18–20]. For the two-dimensional
Ising model,c = 1

2.
In strips with incomplete rows, it is very difficult to expandf in powers of 1/L for

continuousL. As shown in section 2, first-order corrections tof are oscillatory and related
to q(I, x) (equation (3)). Then a numerical analysis of the whole data would have to
consider oscillatory corrections, and a functional form for these corrections (for instance,
powers ofq(I, x)) would have to be assumed. On the other hand, if we analyse separately
the data for each value ofx, we can expandf in powers of 1/L and estimate the corrections
of equation (9) with good accuracy.

We have used polynomials of various degrees, and have obtained estimates off∞
(zeroth-order term),fs (first-order term) and1 (second-order term). Since the exact value
f∞ = −0.929 695 398. . . is known, we considered the estimates from the polynomials
which give the best estimates off∞. In table 1 we show, for each value ofx, the degree
M of that polynomial, the respective estimates off∞, fs and1, and the corresponding
estimate of the conformal anomalyc = −241/π .

Our results indicate thatc = 1
2. Moreover, we observe that the surface free energy for

L = I + x andL = I − x is nearly the same, since the boundaries are very similar: the
magnetic sites in the last row of the strip withL = I + x are the non-magnetic (absent)
sites in the last row of the strip withL = I − x, and vice versa. In fact, whenI → ∞,
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Table 2. For Gaussian strips (L = I + x, fixed x), M is the degree of the polynomial in
1/L which gives the best estimate of the critical free energyf∞, andfs and1 are first- and
second-order terms of the expansion (equation (8)).c is the conformal anomaly. The last line
shows estimates considering all values ofL (5 6 L 6 14). Errors in the last digits, shown
in parentheses, are standard deviations given by the fitting procedure without considering error
bars in the data.

x M f∞ fs 1 c = 241/π

0 5 −0.929 695 38(1) 0.243 955 91(6)−0.065 429(1) 0.499 84(1)
0.1 5 −0.929 695 38(1) 0.244 091 53(9)−0.065 427(1) 0.499 83(1)
0.2 5 −0.929 695 38(1) 0.244 363 32(7)−0.065 431(1) 0.499 86(1)
0.3 5 −0.929 695 38(1) 0.244 580 67(5)−0.065 429(1) 0.499 84(1)
0.4 5 −0.929 695 37(1) 0.244 345 6(1)−0.065 424(2) 0.499 80(2)
0.5 5 −0.929 695 38(1) 0.244 760 68(8)−0.065 426(1) 0.499 82(1)
0.6 5 −0.929 695 38(1) 0.244 412 46(7)−0.065 426(1) 0.499 82(1)
0.7 5 −0.929 695 38(1) 0.244 137 89(7)−0.065 430(1) 0.499 85(1)
0.8 5 −0.929 695 38(1) 0.243 751 06(6)−0.065 429(1) 0.499 84(1)
0.9 5 −0.929 695 38(1) 0.244 095 7(1)−0.065 428(2) 0.499 83(2)
All 2 −0.929 71(5) 0.244 6(8) −0.067 4(31) 0.515(24)

q(I, x) is symmetric aroundxM = 0.5 (equation (3)), which explains the symmetry offs
aroundx = 0.5.

We have performed the same analysis in the Gaussian strips. In table 2 we show the
degreeM of the polynomials which give the best estimates off∞ and the corresponding
estimates offs , 1 and c, for each value ofx (consideringL = I + x). Only data with
L > 5 were considered. The results are also consistent with a universal valuec = 1

2, and
the surface free energy is nearly the same for all values ofx. The same quantities were
estimated using all values ofL together (from 5 to 14, at intervals 0.1), and are shown in
the last line of table 2. In that case, the errors are much larger, but still consistent with
c = 1

2. This problem is certainly related to the discretization procedure, which leads to
slightly different boundary effects for differentx, as discussed in section 4.

Thus, the main conclusion is that the conformal anomalyc = 1
2 is obtained, with good

accuracy, in the case of random boundaries, for all types of randomness considered here.

6. Summary and conclusion

We studied the Ising model on two types of two-dimensional finite structures with non-
integer characteristic lengths.

First we considered strips withI complete rows and one partially filled row with
probability x (lengthL = I + x). In those strips, the free energy, the specific heat and
the magnetic susceptibility per spin oscillate asL increases, at fixed temperature. This
behaviour is related to the oscillations in the mean coordination number of the strip, while
the last row is being filled. The main consequence of those oscillations is that finite-size
scaling cannot be generalized to continuousL unless oscillatory corrections are considered.
The amplitude of these corrections decay as 1/L, but they are still very high forL ≈ 10.
On the other hand, for values ofL differing by integers (L = I + x, with variableI and
fixed x), finite-size scaling relations are satisfied, with the usual corrections in powers of
1/L.

We also considered strips with discretized Gaussian distributions of widths (mean width
L and rms deviation1L = 1). In these structures, there are no oscillations of the
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thermodynamic quantities as functions of continuousL. Small fluctuations in declivities,
which are detected in the calculation of critical exponents, are related to the discretization
of the width distribution. Thus finite-size scaling relations are satisfied with reasonable
accuracy for continuousL.

The fits of the free energy as a function of 1/L atTc indicate that the conformal anomaly
is c = 1

2 for all types of random boundaries considered here.
If thermodynamic quantities vary smoothly withL in magnetic systems with non-integer

characteristic lengths, then our results suggest that they are not grown layer-by-layer, but
instead that their roughness pattern is constant for allL (or, possibly, they have another
roughness pattern with a smooth relation betweenL and1L). It would be interesting to
pursue the investigation of these features both in real systems (e.g. thin magnetic films) and
in three-dimensional models.
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